
IEEE  JOURNAL ON SELECTED  AREAS  IN  COMMUNICATIONS. VOL. SAC-4, NO. 6,  SEPTEMBER 1986 833 

Characterizing  Superposition  Arrival  Processes  in 
Packet  Multiplexers for Voice  and  Data 

KOTIKALAPUDI SRIRAM, MEMBER, IEEE, AND WARD WHITT 

Abstract-This  paper  analyzes  a  model of a  multiplexer for pack- 
etized  voice  and  data. A major  part of the  analysis  is  devoted  to  char- 
acterizing  the  aggregate  packet  arrival  process  resulting from the su- 
perposition of separate  voice  streams.  This  is  done  via  the  index of 
dispersion for intervals (IDI), which  describes  the  cumulative  covari- 
ance  among  successive  interarrival  times.  The ID1 seems  very  prom- 
ising  as  a  measurement  tool  to  characterize  complex  arrival  processes. 
This  paper  also  describes  the  delays  experienced by voice  and  data 
packets in the  multiplexer  using  relatively  simple  two-parameter  'ap- 
proximations. 

U 
I .  INTRODUCTION 

NTIL  recently, studies on communication networks 
for digital voice and data primarily concentrated on 

voice using time assigned speech interpolation (TASI), 
also known as digital speech interpolation (DSI), with 
separate channels being assigned to each voice source 
during each talkspurt, and data using any channels that 
are momentarily idle (voice has nonpreemptive priority 
over data) [ 11-[4]. Now, packet-switched communica- 
tions networks are  also being developed for voice and 
data, with a  single  fast channel handling the packets from 
all sources [5 ] - [8 ] .  Thus, significant research effort is 
currently being devoted to the performance of packet mul- 
tiplexers for voice and data [9]-[  181. 

In this paper, we continue  to study packet multiplexers 
for voice and data, giving special attention to the char- 
acteristics of the packet voice traffic. (We also consider 
data to some  extent, but we primarily focus on voice 
alone.) It turns out that the aggregate packet arrival pro- 
cess resulting from the superposition of the streams from 
many voice sources is quite  complicated, possessing a 
certain burstiness (high variability) that leads to surpris- 
ingly large packet delays in the multiplexer under heavy 
loads.  The primary purpose of this paper is to develop a 
better understanding of the aggregate voice packet arrival 
process. We  also investigate simple approximations to de- 
scribe the packet delays  for both voice and data. 

The complexity of the  aggregate voice-packet arrival 
process is primarily due  to the bursty nature of the packet 
arrival process from a  single voice source.  The packet ar- 
rival process from a  single voice source consists of ar- 
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rivals occurring at fixed intervals during talkspurts and no 
arrivals at all during silences;  see Fig. 1. Hence, the in- 
terarrival times are usually one packetization period, but 
occasionally much longer (one packetization period plus 
a silence period). As we explain in Section 11-A,  it is rea- 
soaable to model the packet arrival process from one voice 
source by a renewal process (the packet interarrival times 
can be regarded as i.i.d. [independent and identically dis- 
tributed]), but the interarrival-time distribution in the 
packet arrival process from one  source is highly variable, 
so that the renewal arrival process from each source is 
very bursty (in comparison to a Poisson process). As a con- 
sequence, the aggregate packet arrival process resulting 
from the superposition of many independent voice packet 
stream.s is not nearly a renewal process. As others have 
observed before, this is to be expected because the in- 
stantaneous arrival rate in the aggregate packet voice ar- 
rival process at any time is a function of the number of 
voice sources in talkspurts, which fluctuates substan- 
tially. 

The main idea here is ta focus on the dependence among 
successive interarrival times in the aggregate packet ar- 
rival process. In particular, we apply the index of disper- 
sion for intervals (IDI)  [19,  pp. 71-72]. This technique 
applies much more broadly, and we believe that it can 
greatly help understand other complex arrival processes 
in queueing systems (and elsewhere). Let {x),, k 2 l }  
represent the sequence of interarrival times of an arrival 
process. We assume that { x k ,  k 1: l }  is stationary, by 
which we mean that the joint distribution of ( x k ,   x k  + 

* - , x k  +,) is independent of k for all m. Let s k  = X 1  
+ . . .  + x k  denote  the sum of k consecutive interar- 
rival times.  The IDI, which we also call the k-interval 
squared coefficient of variation sequence, is the sequence 
{c;, k 2 l} defined by 

k c cov ( X ; .  X ; )  
~ . I  ,I 

k Var (&) Var (&) 
i , j  = I 
i # j  - '' = [E(Sk)I2 k[E(XI)l2 = " + 

- 
k[E(XI)l2 
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Fig. 1. Packet  arrival  process due to one  voice  source 

where cov ( X i ,   X ; )  is the covariance between Xi and X j ,  
defined by cov ( X i ,   X j )  = E ( X i X j )  - &Xi)  E(X,).  For k 
= 1 ,  c: = c: is  the squared coefficient of variation (vari- 
ance divided by the  square of the mean) of a  single inter- 
arrival time.  For k > 1, c: is k times the squared coeffi- 
cient of variation of sk. The  factor k appears because the 
squared coefficient of variation of S k  typically converges 
to 0 as k + 00, due to the law of large numbers. For k > 
1, ci measures the  cumulative  covariance (normalized by 
the  square of the mean) among k consecutive interarrival 
times.  The notion of cumulative  covariance  seems to be 
very important for  the multiplexer application, because 
the exceptionally large packet delays under heavy loads 
are evidently due, not to high values of c: or cov (Xi, I$), 
but to the cumulative effect of many small individual cov- 
ariances. 

We were motivated to use  the ID1 because its limiting 
value c’, = limk+& c: is known to completely character- 
ize the effect of a general stationary arrival process (be- 
yond its average arrival rate) on the congestion of a mul- 
tiserver FIFO queue in heavy traffic; see  [20, Theorem l ]  
and [2 1, Theorem  20.11.  (The limiting term c’, is essen- 
tially, except for  the  choice of measuring units,  the nor- 
malization constant that appears in the central limit theo- 
rem for { S k ,  k I l}.) The ID1 (actually Var (sk)) is 
suggested as  a tool to  develop approximations for arrival 
processes to queues in [22, Section 21. The covariances 
were also used for  a related problem by Heffes [23] and 
have been applied by Heffes and Lucantoni [24] to de- 
velop a different. approximation for this model. In their 
work,  the superposition arrival process is approximated 
by a Markov-modulated Poisson process (MMPP), and 
the resulting queueing model is solved using matrix-ana- 
lytic methods [25]. 

The specific model we consider  for the multiplexer is a 
single-server  queue with unlimited waiting room and the 
first-in-first-out (FIFO)  service  discipline.  The inputs to 
the multiplexer consist of aggregated voice traffic streams 
together with data traffic. We assume that the service times 
are independent of the arrival process and i.i.d. with a 
general distribution. (The service-time distribution is often 

deterministic.) We also assume that the overall packet ar- 
rival process can be represented as  a superposition of in- 
dependent renewal processes, so that in standard queueing 
parlance we have a CGZi /G/1 model. The most question- 
able assumption for applicability is the service discipline, 
because many voice/data multiplexers use priority 
schemes. For  simplicity,  we  consider only a  FIFO model 
here, but it’seems  clear that the insights about voice packet 
traffic generalize.  (For  example,  the limiting quantity c’, 
in the ID1 is known to play a  similar role for priority 
queues in heavy traffic [26],  [27].) 

With the modeling assumptions above, analyzing the 
performance of the multiplexer reduces to analyzing a 
CGZi/G/l queueing model, but the superposition arrival 
process makes this an extremely difficult model to analyze 
exactly.  Thus,  we resort to approximations.  In  particular, 
we use two-parameter approximations as in the queueing 
network analyzer (QNA) software package [22], [28]- 
[32]. With this technique,  the superposition arrival pro- 
cess is approximately characterized by two parameters, 
one representing the average arrival rate and  the  other the 
variability. The variability parameter  can  be viewed as the 
squared coefficient of variation (variance divided by the 
square of the mean) of an interarrival time in an approx- 
imating renewal arrival process, but this does not mean 
that the  dependence in the original process is ignored.  The 
procedure attempts to  capture  the  dependence  (the  co- 
variances) by making the variability parameter depend upon 
elementary properties of the  IDI.  Since  the relevant co- 
variances tend to depend on the traffic intensity in the 
queue,  the approximating variability parameter  also  de- 
pends on the traffic intensity of the  queue, even ‘though 
the arrival process is an exogenous input (independent of 
the service times in the queue).  The primary advantage of 
this approach is that it readily produces approximations 
that capture the main qualitative  behavior.  The  closed- 
form formulas also help to provide insight. 

This approximation approach was previously applied by 
Jenq [15] to analyze  a multiplexer serving only packet 
voice.  Our work began with the intent of extending Jenq’s 
analysis to include data  as  well.  Since  the QNA approxi- 
mation formulas in [28] apply to arbitrary superposition 
arrival processes, this extension seemed to present no dif- 
ficulties, but an anomaly in the  QNA formulas was dis- 
covered when the  data is modeled as  a Poisson process. 
Since the superposition of independent Poisson processes 
is again Poisson, it should not matter  whether we repre- 
sent the Poisson data as the superposition of n indepen- 
dent Poisson data  streams  each with rate X or a  single 
Poisson data stream with rate nX. Unfortunately,  how- 
ever,  the QNA formulas  are not independent of this spec- 
ification when there  are  also non-Poisson voice processes 
present. (See Section 111-A). We found that the approxi- 
mation tends to perform best if the number n of Poisson 
data streams is selected so that the rate X of each individ- 
ual Poisson data stream .is approximately the  same as the 
average arrival rate of each individual non-Poisson voice 
arrival stream. Upon reflection, this is intuitively reason- 
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able; we should expect that the QNA approximation for 
superposition processes would perform better if the pro- 
cesses being superposed are  all approximately in the same 
time scale (have  similar  rates). 

It soon became  clear that the notion of relevant  .time 
scale is very important more generally.  From the point of 
view of classical superposition limit theorems [33] (dis- 
cussed in Section II), we should expect that the superpo- 
sition of many component stationary arrival processes 
would be nearly Poisson, but even with more than a 
hundred voice sources,  the multiplexer under heavy loads 
experiences packet delays much greater than would occur 
with a Poisson arrival process. In fact,  the deviation from 
Poisson behavior increases as  the number of streams in- 
creases.  This apparent contradiction can be explained by 
focusing on the time  scale.  The notion of time  scale ap- 
pears indirectly in the classical superposition limit theo- 
rem [33] in the requirement that the individual streams get 
sparse  as the number of streams increases, so that the total 
average arrival rate remains unchanged. This condition is 
clearly violated in the multiplexer example, but we could 
rescale time in the aggregate arrival process to enforce 
this condition. The real issue then is the relevant time 
scale for the aggregate arrival process in its intended ap- 
plication. We will show that the aggregate voice packet 
arrival process does  behave  like  a Poisson process over 
relatively short time  intervals, but under heavy loads the 
congestion in the multiplexer is determined by the behav- 
ior of the arrival process over much longer time intervals, 
where it does not behave like  a Poisson process. Much of 
this paper is devoted to clarifying this phenomenon of time 
scale for arrival processes to queues. Related discussion 
appears in [34]. 

This paper extends Jenq [15] not only by considering 
multiplexers for data as well as  voice, but also by describ- 
ing the probability of delay and the standard deviation of 
delay as well as the expected delay.  (“Delay”  or  “wait- 
ing time’’ here refers to the time required to reach the 
server; it does not include service  time.) We also  further 
investigate the quality of the QNA approximations, using 
the ID1 for  guidance. In particular, in Section 111-C-2), 
we develop a new modification of the QNA approxima- 
tion especially for the multiplexer model. Thus the paper 
has two principal thrusts: first, to characterize the aggre- 
gate packet arrival process using the ID1 and, second, to 
extend and further evaluate  the  simple QNA approxima- 
tions. 

The rest of this paper  is organized as  follows. In Sec- 
tion I1 we focus on the arrival process. Section 11-A de- 
scribes our renewal-process model for the packet-arrival 
process from a  single voice source; Section 11-B discusses 
indexes of dispersion and characterizes the superposition 
arrival process associated with multiple voice sources; and 
Section 11-C discusses  the interaction between the arrival 
process and the queue (the issue of time  scale). In Section 
111, we present and evaluate approximations describing 
packet delays in the  multiplexer. Section 111-A reviews 
some of the QNA formulas in [28]; Section 111-B de- 

scribes the simulation experiments and makes numerical 
comparisons; and Section 111-C presents the new im- 
proved approximations for this model. In Section IV, we 
consider the related model with a finite buffer, to test the 
hypothesis that the arrival process behaves like  a Poisson 
process for small buffer sizes but not for  large  buffersizes, 
because of the time scale.  The idea is that a  small b!uffer 
should greatly restrict the interactions among arrivals 
widely separated in time, reducing the impact of  many 
small long-term covariances.  Finally, in Section V ,  we 
present our conclusions, emphasizing the usefulness of the 
ID1 to describe  the variability of arrival processes. 

11. CHARACTERIZATION OF PACKETIZED VOICE TRAFFIC 

A. Single  Voice  Source 

The packet stream from a single voice source is char- 
acterized by arrivals at fixed intervals of T ms during talk- 
spurts and no arrivals during silences (see Fig.  1). We 
assume that successive talkspurts and silence periods form 
an alternating renewal process; i.e., all these time inter- 
vals are independent with each talkspurt being of random 
length NT and each  silence period of random length X .  
Our most important assumption is that the number N of 
packets in a talkspurt is geometrically distributed on the 
positive integers.  This is consistent with measurements 
indicating that talkspurts are approximately exponentially 
distributed [35]-[38]. Because of the lack of  memory 
property associated with the geometric distribution,  the 
packet stream due to a single voice source is a renewal 
process. To specify our model completely, we assume that 
the voice packetization period is T = 16  ms, the silence 
periods are exponentially distributed with mean p-’ = 
650 ms, and that the mean number of packets per talk- 
spurts is E ( N )  = 22, so that the mean talkspurt is CY-’ = 
352  ms [38]. (An exponential distribution for  the silence 
period seems reasonable given the measurement studies, 
although it  is not a perfect fit [35]. In fact, any distribu- 
tion for X could be used in our  analysis.) In other words, 
each packet interarrival time from one voice source is of 
length T = 16 ms with probability p = and of length 
X + T (where E(X + T )  = 666 ms) with probability 1 - 
p = &, as shown in Fig.  2.  (The interarrival time includ- 
ing a  silence is X + T because the first packet in a talk- 
spurt does not arrive until after T ms.  The voice-packet 
size depends on  the coding scheme used; e.g., for 32 
kbit/s ADPCM coding and T = 16  ms, the packet size  is. 
64 bytes.) 

The squared coefficient of variation (variance divided 
by the square of the mean) of an interarrival time in this 
renewal process is 

C: = (1 - p 2 ) / [ T p  + (1 - p)I2 = 18.1. (2) 

Even though the packet arrival stream from a  single voice 
source can be modeled by a renewal process, it is very 
bursty, as is reflected by the very high value of c:. 
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Fig. 2 .  Probability  density  function of packet  interarrival  time for one  voice 
source. 

B. Multiple  Voice Sources 
We now proceed to  characterize  the aggregate packet 

arrival process resulting from  the superposition of n 
packet-voice sources in terms of the indexes of dispersion 
for  intervals  and  counts; [19, pp. 71-72]. The index of 
dispersion for  intervals  (IDI) was defined in ( 1 ) ;  now we 
define the  index of dispersion  for  counts  (IDC). 

Let N(t) denote  the counting process associated with an 
amval process. (See [19] or [22, Section 11 for additional 
background.)  The index of dispersion  for  counts, Z ( t ) ,  is 
the function 

The following proposition summarizes well known 
properties of the two indexes of dispersion. 

Proposition 1):  a) For a  Poisson process, Z(t) = 1 = 
ci  for all t and k. b) For a renewal process, c: = cf for 
all k .  c) If ci = c; for all k ,  then cov ( X i ,  5 )  = 0 for all 
i ,  j ( i  # j ) .  

Looking for fluctuations in the ID1 sequence {c i ,  k 1 
l }  is a good way to test for  deviations from the renewal 
property. In [22],  [28],  [29], the  sequence { ci} is used as 
the basis for  calculating  the variability parameter to ap- 
proximately characterize  the arrival process.  The station- 
ary-interval method in [22] uses c:; the asymptotic method 
in [22] uses c:; and Albin's hybrid methods in [29] use 
the convex combinations wc', + (1 - w)c:. More  gen- 
erally, it is natural to  use weighted functions of the  entire 
sequence, i.e., ET= W k C k  where wk r 0 and ET= wk = 
1 ,  but such procedures still need to be developed. 

Let ci, and I(t;  n) denote  the two indexes of dispersion 
associated with the superposition process of n indepen- 
dent and identically distributed arrival processes.  Impor- 
tant insight into the superposition process is obtained from 
two limits,  one  as t -+ 00 or k + 00 with fixed n ,  and the 
other  as n + 00 with fixed t or k ;  see [19] and [39, pp. 

Proposition 2): For a  superposition of n  independent 

2 

22 1-2291. 

and identically distributed renewal processes, 

Z(w; n) = lim Z(t; n) = c,, = lim ckn = cll  (4) 

for anyjixed n ,  where c:l is the squared coeficient of vari- 
ation of a  single  interval in one of the renewal processes 
being superposed. 

Proposition 3): The superposition of n independent and 
identically  distributed renewal processes  each with rate 

2 2 2 

t + m  k+ m 

X/n tends  to  a  Poisson  process  with rate A as  n  tends  to 
injinity. 

In fact, Proposition 3) also applies to nonrenewal com- 
ponent processes;  see  Cinlar [33]. A key condition in 
Proposition 3) is that the processes being superposed be- 
come increasingly sparse  as n increases.  However, we are 
c'onsidering a superposition of packet-voice streams with 
fixed individual average arrival rates, independent of n. 
In fact, the IDC in the superposition of n packet-voice 
sources with fixed individual arrival rates is identical to 
that of a  single source: 

r n  1 

where Ni(t)  is the counting process corresponding to the 
ith source. Equation ( 5 )  suggests that the superposition of 
packet-voice arrival processes can never be regarded as  a 
Poisson process. However, Proposition 3 can  be invoked 
to deduce that the joint distribution of  any  fixed number 
of interarrival times in the superposition of packet-voice 
processes tends to the distribution of independent expo- 
nential variables (a Poisson process) as n increases.  The 
apparent contradiction is removed by observing that the 
expected interarrival time in the superposition of n pro- 
cesses is (EXl)In, where EXl is the expected value for  one 
stream. Focusing on  a  time  scale in which the expected 
interarrival time is fixed as n changes is equivalent  to 
making the individual streams sparse in Proposition 3) ;  
i.e., we  are then considering Z(t/n; n).  

In fact, if we  do not consider  the random-environment 
view (i.e., that there is a randomly varying instantaneous 
arrival rate due to a varying number of sources in simul- 
taneous talkspurt), familiarity with Proposition 3)  might 
well lead one to expect that a Poisson approximation for 
the superposition process ought to perform quite  well, be- 
cause  the number of component streams here is quite 
large, about 100. In fact, contrary to what one might ex- 
pect from  the random-environment view alone,  the Pois- 
son approximation does work well under light-to-moder- 
ate  loads.  However,  a Poisson approximation for  the 
arrival process seriously underestimates delays under 
higher loads,  where  the long-term covariances.matter.  For 
a  comparison,  see Fig. 6 and  Table 111. (The numerical 
example is described in Section  III-B). 

The extent to which a superposition process is nearly 
Poisson thus depends not only on n ,  but also on the rele- 
vant time  scale. (See [34, pp. 536, 5431 for  further dis- 
cussion.) In our  case,  over  short  intervals of time the su- 
perposition process looks like  a Poisson process; in fact, 
over short intervals of time the superposition process looks 
like something slightly less variable than a Poisson pro- 
cess; but over  longer intervals of time the superposition 
process significantly deviates  from  a Poisson process and 
is highly variable.  This  can  be seen from the IDC, Z(t; n ) ,  
which has been calculated analytically for  this superpo- 
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Fig. 3.  Index of dispersion for number of arrivals  in (0, r) for voice-packet 
arrival process. 

sition process (for the specific data in Section 111-B with 
ctl = 18.1) by Heffes and Lucantoni [24]; see Fig. 3. 

A study of the k-interval squared coefficient of variation 
(the IDI)  as  a function of k and n consolidates the obser- 
vations made above.  The c;,, versus k values are shown .in 
Fig. 4 for the packet-voice superposition process for var- 
ious values of n. These results were obtained by extensive 
simulations on a Cray-1 . (See Section 111-B-1 for  further 
discussion about the simulation experiment.)  From  Fig. 
4,  it is apparent that & -+ 1  as n -+ 03 for all k (not 
monotonically). Fig. 4 is also consistent with Proposition 
2), showing that -+ c:, as k -+ 00 for  all n. Thus, it is 
observed that as n increases, increasingly more consecu- 
tive intervals in the superposition process are nearly un- 
correlated.  However,  for  a fixed n,  interval covariances 
are quite significant and positive valued when a suffi- 
ciently large number of consecutive intervals are viewed 
collectively. These covariances account for  the rising por- 
tion of the curves in Fig. 4. 

The fact that the ID1 sequence {c;,,, k 1 1 ] is not nearly 
constant in k for  large n clearly demonstrates that the su- 
perposition process is not nearly a renewal process (Prop- 
osition 1-b).  The superposition operation has changed the 
location of the variability. The exceptional variability 
(deviation from a Poisson process) in each component 
stream (from  one voice source) is entirely in the inter- 
arrival-time distribution; the interarrival times are inde- 
pendent. In contrast, the exceptional variability in the su- 
perposition process is almost entirely due  to  the long-term 
covariances. Nearby interarrival times are nearly inde- 
pendent, which is indicated by the flat left-hand portion 
of the ID1 curves  in Fig. 4. Further,  the  interarrival-time 
distribution in the superposition process is nearly expo- 
nential. We substantiate this by calculating the exact the- 
oretical  interarrival-time distribution in  the aggregate 
packet arrival process and its squared coefficient of vari- 
ation ct, using well-known formulas, e.g., [22, eq. (4.4) 
and (4.5)]. (Supporting details are given in the Appen- 
dix.)  The resulting formula is (see Section 11-A for defi- 
nitions of the parameters) 

20 
z 
o_ 

n = l  SINGLE VOICE  SOURCE 

0 
::. I ~ 2 5 IO 20 50 100 200 500 io00 2000 

# CONSECUTIVE  INTERVALS ( k )  

Fig. 4. k-interval  squared coefficient of variation  curves for superposition 
of n voice sources. 

TABLE I 
THE TAIL PROBABILITIES OF THE STATIONARY-INTERVAL DISTRIBUTION IN 

THE VOICE SUPERPOSITION ARRIVAL PROCESS: A COMPARISON OF THE 
EXACT THEORETICAL VALUES TO A N  EXPONENTIAL DISTRIBUTION HAVING 

THE SAME M E A N .  (THERE ARE n SOURCES, EACH WITH  AVERAGE  ARRIVAL 
RATE = 0.0223 PACKETS/mS.) 

I 2.0 1 0.4260 1 0.4155 1 0.0117 1 0.0124 

t I I 
I I I 1 1 0.1743 1 0.1726 I 0.00011 I O.CO015 1 

0 . W 2 7  0,00088 2 . 5 ~ 1 0 - ' ~ '   5 . 5 ~ 1 6 ' ~  

I I I I I I 

2 
n + l  

c2 - I - -  
In - 

+ ( T i O + l - p ) l + ' ( &  1 - P  - E ) .  n + l  (6) 

The  exact theoretical interarrival-time distribution in the 
aggregate packet arrival process is compared to an expo- 
nential distribution with the same mean for n = 20 and 
100 in Table I; c:, as  a function of n is depicted in Table 
11. Table I1 shows that the last term in (6) becomes neg- 
ligible for  large n. Table I1 also shows that c:, decreases 
rapidly from 18.1 for n = 1 to about 1 at n = 10, then 
continues below 1, reaching a minimum of 0.906 for n = 
18, and then approaches  1 as n 7 00, consistent with 
Proposition 3). 
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TABLE I1 
THE SQUARED  COEFFICIENT OF VARIATION OF THE  STATIONARY-INTERVAL 

DISTRIBUTION IN THE  VOICE  SUPERPOSITION ARRIVAL PROCESS: THE  EXACT 
THEORETICAL V A L U E  AS  A FUNCTION OF THE NUMBER OF SOURCES. (THE 

MINIMUM VALUE OF c:, IS MARKED WITH AN ASTERISK.) 

These observations have important implications for sta- 
tistical measurements. Note that the  aggregate packet ar- 
rival process. for  large n will pass many tests for  the Pois- 
son process with flying colors.  It is also important to look 
for  the  cumulative effect of small long-term covariances: 

C. Interaction  With  the  Queue 

The  above results suggest that the superposition arrival 
process,  for fairly large n,  will affect the  queue  like  a 
Poisson process at lower traffic intensities, but more like 
a  single highly variable component renewal process under 
higher traffic intensities, because the  long-term  covari- 
ances among interarrival times begin to, affect the queue 
under higher traffic intensities.  In  fact,  there  are  exact  an- 
alytical results regarding queues with general stationary 
arrival processes at high traffic intensities that provide 
theoretical support  for this description in heavy traffic 
[20],  [31],  [32]. At high traffic intensities,  the  covari- 
ances over many interarrival times significantly influence 
the queue  behavior. In fact, in the heavy-traffic limit the 
impact of the arrival process on the queue is determined 
by c:. This is justified for  a stationary sequence of inter- 
arrival times by combining [20, Theorem I]  with [21, 
Theorem 20. I]. 

In fact, we are primarily interested in the performance 
of the multiplexer as a function of the number n of voice 
lines, From .Proposition 3) alone, we might expect the 
Poisson approximation to get  better as n increases, but it 
does not; it gets much worse (Fig. 6 and Table 111). We 
have seen that this can be explained partly by the fact that 
the individual streams are not getting sparse an n in- 
creases, but they can be regarded as getting sparse if we 
adjust (rescale) the time scale with n.  From the point of 
view of the queue, what matters is how the traffic intensity 
p changes with n as n increases.  Since the mean service 
time is fixed, here p is directly proportio-nal to n. The 
heavy-traffic theory in [3 11 and [32] indicates that n( 1 - 
p)2 is critical as both n -+ 00 and p -+ 1 .  Here n(l  - p)2 
+ 0 as n + 00, so that the limit as n -+ 00 is essentially 
the same as p + 1 with n fixed. In  other  words,  here  the 
limit in Proposition 2) eventually dominates the  limit in 
Proposition 3) as n + 00. As n increases and p -+ 1, the 
traffic interaction in the queue spans  over many intervals 
in the superposition arrival process. Thus,  the long-term 
covariances between the  interarrival times in the  aggre- 
gate packet arrival process (as indicated by the rising por- 
tion of the ID1 curves in Fig. 4) play a significant role, 
and the  aggregate packet arrival process eventually looks 
substantially more variable than a Poisson process. 

111. PERFORMANCE ANALYSIS OF THE MULTIPLEXER 
A. The Queueing  Network  Analyzer  (QNA)  Technique 

The multiplexer is modeled as  a standard single-server 
queue with unlimited waiting room and the FIFO queueing 
discipline (i.e;, no priority is given to either voice or 
data).  The traffic entering the FIFO queue is a superpo- 
sition of voice and data packet streams. Assuming that the 
outgoing transmission rate is R kbit/s,  a packet service 
time is X/R ms when X is the packet size in bits. With our 
analysis techniques,  the packet size X can be a random 
variable with a general distribution. If there is no data 
traffic, then it is natural to let the service time  be  deter- 
ministic because voice packets are typically all the same 
size. 

Ten parameters are used to represent the  voice and data 
lines: n l ,  ‘n2, X I ,  X2, cl, c2, rl ,   r2 ,  and c ,”~ .  There  are 
nl  (n2) independent and identically distributed voice (data) 
lines.  The arrival rate of each voice (data) line is XI (A2) 
and the variability parameter or squared coefficient of 
variation of the interarrival times in each voice (data)  line 
is c: (ci). The total arrival rate, is thus X = nlXl + n2X2. 
The mean and squared coefficient of variations of the 
packet length for  voice.(data)  are r1 and c:, (r2 and c : ~ ) .  
Let r and c: be  the mean and the squared coefficient of 
variation associated with the packet service  time  for  the 
combined voice and data traffic, computed by 

2 2  

n,X1rl + n2X2r2 
nlXl + n2X2 

r =  

and 
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using standard formulas  for  mixtures; 'i.e., the kth mo- 
ment of a mixture of distributions  is  a mixture of the kth 
moments. The transmission line utilization is thus p = TX 
= n l X 1 ~ l  + n2X2r2 = p1 + p 2 .  

The QNA approximation [28] proceeds in two steps. 
First,  the complicated superposition arrival process is ap- 
proximated by a renewal arrival process partially charac- 
terized by the first two moments of its interarrival-time 
distribution or, equivalently, by the mean A- '  and squared 
coefficient of variation c," of the interarrival-time distri- 
bution. 

Second, approximation formulas are applied for' the 
various congestion measures in a GZ/G/1 queue partially 
characterized by the first two moments of the interarrival- 
time and service-time distributions, i.e., the parameter 
four-tuple (X, c:, 7, c;). The following is the formula for 
the squared coefficient of variation, c:, of the interarrival- 
time distribution in the approximating renewal process for 
the aggregate packet arrival process entering the multi- 
plexer queue: 

~ ( p ,  U) 3 w = [l + 4(1 - P ) ~ ( u  - 1)I-l 
and 

(n1X1 + u =  
nlX: + n2x; ' 

The quantity ciM in (8) is the asymptotic-method ap- 
proximation in [22], which is the  exact theoretical value 
of c', for  the superposition process.  The approximation is 
asymptotically correct  for  the mean delay in the queue as 
p -, 1 with nl and n2 fixed (e.g., by increasing T toward 
the critical value), by the heavy-traffic limit theorems [20]. 
The parameter u in (8) measures the effective number of 
component processes constituting the superposition pro- 
cess, e.g., if n2 = 0,  then u = n1 and w = [ l  + 4(1 - 
p)'(nl - 1 ) I - l .  For the rest of this paragraph, suppose 
that n2 = 0 (this is not strictly necessary). If n,  + 03, 
then w -, 0 and c: -+ 1 ,  in accordance with Proposition 
3). Even though the  exact theoretical value c:,, of the 
squared coefficient of variation of a  single interval rapidly 
approaches 1 as nl increases,  the QNA approximation se- 
lects an increasingly higher squared coefficient of varia- 
tion c i  as n1 increases, to indirectly capture the effect  of 
covariances (see  Fig. 5 ) .  

Whenever it is known that the superposition of the data 
packet streams can be well approximated by a Poisson 
process, then c$ = 1 and n2 and h2 can be chosen arbi- 
trarily so long as  the product n2X2 remains fixed. How- 
ever, it is easy to see that the values of u ,  w, and c: in (8) 
are not independent of this choice.  For this situation,  the 
numerical results indicated that the approximation per- 
forms best if n2 is selected so as to make X2 2: A,. This 
is intuitively reasonable; we should expect the approxi- 
mation to perform better if the processes being super- 
posed are in the  same time scale (i.e., have similar  rates). 

- EXACT FOR MODEL --- QNA APPROXIMATION --- POISSON  APPROXIMATION 

n= 4 

I 
i 
i 
i 
i 
I 
i 

1 X )  4 0  60 80 100 120 440 
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Fig. 5 .  Squared  coefficient of variation of a single interval  in  the voice 
superposition process. 

After we have applied (8),  we  can  calculate congestion 
measures for the queue such as the mean and standard 
deviation of delay,  the probability of delay, etc., by re- 
garding it as a GZ/G/l queue (with renewal arrival pro- 
cess) partially characterized by X, c:, 7 and c; where cz 

c:(p) is a function of p .  See  [28, Section 5.1.1 for spe- 
cific formulas. See [29] and [40] for investigations of the 
quality of the approximations. 

B. Numerical  Comparisons 
The parameters used in the numerical study are: mean 

talkspurt duration a-l = 352 ms, mean silence duration 
0-l = 650  ms, and fixed packetization period T = 16  ms, 
so that the mean number of packets per talkspurt is 352/ 
16 = 22 and the voice-line activity (the fraction of time 
each voice source is in talkspurt) is 0.351.  Thus, for  each 
voice line,  the arrival rate is about 1320 packets per min- 
ute.  The transmission line is assumed to be a T I  line with 
a rate of 1.536 Mbits/s.  Thus, the capacity of the multi- 
plexer without data is 136 voice lines (corresponding to 
nearly 100 percent line utilization). 

1) m e  Simulation  Experiments: Extensive simulations 
were performed to estimate the performance measures of 
this model. The simulation experiments were run on a 
Cray-1 computer with a special-purpose Fortran program. 

To obtain the performance measures (expected delays, 
etc.), the multiplexer was simulated for fifteen minutes 
operating time. (The outputs printed out at one-minute in- 
tervals over  the  last six minutes indicated that the aver- 
ages had stabilized.) Each experiment was repeated nine 
times with different seeds for  the random number gener- 
ator.  For the case of 100 voice lines, the total number of 
arriving packets considered for  each  case was thus nearly 
20 million (9 X 15 X 100 X 1320 = 17 820 000). 
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The estimates of the mean and standard deviation of 
packet delay were obtained by averaging the nine values 
associated with the different replications.  The 95-percent 
confidence intervals were obtained assuming a  Student4 
distribution. A similar  procedure was used when data 
traffic was also included. 

To estimate  the ID1 (the curves in Fig. 4), the super- 
position arrival process for each n considered was simu- 
lated in one run of 300 min operating time. In the case of 
60 voice  lines, this means about 24 million packets. For 
larger values of k (e.g., k > loo), this amount of data is 
needed to produce reasonable estimates of cz. Values of k 
up to 3000 were considered, but for  the largest values of 
k the  estimates had not yet stabilized. (The values where 
the  estimates stabilized reasonably well are displayed in 
Fig. 4). 

The  estimate of cz in (1) as  a function of k was calcu- 
lated by collecting  the arrival data over  one-minute inter- 
vals and doing  the  calculations with this data for all k, 
1 I k I 3000. For  each. k, the interarrival times were 
grouped in adjacent nonoverlapping blocks of size k. 
(Nonoverlapping is not necessary.)  For  each k, the sums 
and 'sums of squares of these k-blocks (sums of k succes- 
sive interarrival times) were then calculated for  the data 
in the one-minute interval and accumulated. To be pre- 
cise, let Yki be the length of the ith k block (i.e., Ykl = XI  

be the total number of k blocks.  Our  estimate of Var (S,)  
is thus simply 

+ . . .  + x,, Y,, = x,,, + * * + X2,, etc.) and let nk 

I l k  
2 

/ nk \ 

nLT1 i =  c I yli - (.;I i =  c 1 yki) . 

We then combine this with the known exact value of E(X,) 
to obtain  our  estimate of c; in (1 ) .  

2) Evaluating the Approximations: The QNA analytic 
technique in Section III-A and [28] is compared to the 
Poisson approximation and simulation for  the case of 
voice traffic only in Figs. 6 and 7 and Table 111. (Delays 
refer to the time until beginning service; service times are 
not included.  The packet service  time is small compared 
to typical queueing delay values due to the high transmis- 
sion rate of 1.536 Mbits/s.)  The service times here are 
assumed to be deterministic.  The  95-percent confidence 
intervals are indicated as well as the sample averages for 
the simulation.  The QNA approach predicts the mean and 
standard deviation of delay in a packet-voice multiplexer 
with reasonable accuracy, especially at higher utiliza- 
tions, where the Poisson approximation significantly 
underestimates both.  However,  the QNA approach does 
overestimate delays under moderate loads.  From  the anal- 
ysis in Section II-B, we expected that  the Poisson approx- 
imation would perform very well in light traffic and very 
poorly in heavy traffic, and that the QNA approximation 
would perform very well in heavy traffic. Figs. 6 and 7 
confirm these predictions, and also indicate what happens 
over  the  entire  range. 

Fig. 8 shows the mean delay versus utilization curves 
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Fig. 7 .  Standard deviation of delay for a  packet  multiplexer (voice traffic 
only). 

for  a multiplexer with voice and data. In this example, the 
voice load is fixed at 80 active  voice  lines (corresponding 
to a voice utilization of about 59 percent) and the  data  is 
varied.  The  data traffic is assumed to be characterized by 
Poisson arrivals  and geometric packet size with mean 50 
bytes. The Poisson arrival rate is determined by the data 
traffic intensity p2 and the specified transmission rate of 
1.536 Mbits/s.  (The method outlined in Section III-A is 
valid, in general,  for  data traffic streams with renewal ar- 
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TABLE 111 
A COMPARISON OF APPROXIMATIONS OF THE MEAN PACKET DELAY TO 

SIMULATION ESTIMATE IS GIVEN I N  PARENTHESES UNDER THE . 

SIMULATION  ESTIMATES. (THE RATIO OF  THE APPROXIMATION TO  THE 

APPROXIMATIONS. THE 95-PERCENT  CONFIDENCE  INTERVAL, BASED ON 
NINE INDEPENDENT  SIMULATION  REPLICATIONS, IS GIVEN IN  PARENTHESES 

BELOW THE  SIMULATION ESTIMATES IN COLUMN 3.)  

is 1 
k 

IC 
- IODIFIED  ONA 

:z(p) Ew(rns) 

0.91 
(1.00) 
0.03 

0.95 0.07 
(1.00) 

0.97 0.13 
(1.00) 

0.98  0.23 
(1.05) 

0.98 0.31 
(1.00) 

0.98 0.45 
(1.00) 

(1.02) 

3.44  4.14 

1.32  0.91 

(1.02) 

6.01 10.8 
(1.04) 

10.99 36.9 
(1.13) 

13.74  65.2 
(1.25) 

16.40  139.0 
(1.27) 

rival intervals.)  The conclusions about the performance 
of the QNA technique are unchanged with the addition of 
data.  However, it was observed (also see discussion in 
Section 111-A) that the QNA approximation estimates 
mean delays best when X, 5= A2. When data is Poisson it 
is always possible to pick n2 and A2 so as to match'X2 with 
A, while keeping the overall data arrival rate nzA2 fixed. 
The delays for voice and data  are  each approximated to 
be the delay seen by an arbitrary arrival.  This is not al- 
ways a good approximation, but it is reasonable for this 
model (see discussion in Section 111-C-1) and Table IV). 

C. Rejined Approximations 
The QNA methodology [28] can be used in two ways: 

First, it immediately provides relatively simple approxi- 
mations for any model satisfying the basic assumptions; 
e.g., it can be applied directly, as described in [28] and 
Section 111-A above.  Second, it provides a starting point 
for developing better simple  approximations, based on re- 
finements obtained by exploiting special features of the 
particular problem. It should be expected that improved 
approximations can be obtained by making additional 
modifications, as we  now illustrate  for the packet-voice 
multiplexer. 

1) Probability of Delay: First,  as  a refinement to the 
probability of delay approximation in (48) of [28], we 
propose using the traffic intensity p instead.  (This in turn 
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80 VOICE SOURCES 

FIFO QUEUE DISCIPLINE 
(pq ~ 0 . 5 9 )  

50 I 
, '- -.. 

... 

c 10 - E 
E 
; 5  
-I 

W 
(3 

E 
W 

a 

z 

1.0 

0.5 

TABLE IV 
SIMULATION VALUES OF EXPECTED DELAYS AND UTILIZATIONS FOR THE 

EXAMPLE WITH VOICE AND DATA 

r - 
DATA 
ON  CY 

0.00 

0.10 

0.15 

0.20 

0.25 

- 

0.30 

0.35 

0.40 - 

'ILIZP - 

'OTAL 

_. 

0.59 

0.69 

0.74 

0.79 

0.84 

0.89 

0.94 

0.99 

IN 

TOTAL 
ESERVED 

0.583 

0.683 

0.733 

0.783 

0.831 

0.883 

0.933 

0.983 

l- 
ROBABILITY 

DBSERVED 
OF  DELAY 

0.574 

0.677 

0.728 

0.779 

0.833 

0.883 

0.935 

0.985 

T 
DELAYS 

EXPECTED DELAYS 

RBITRARY 
PACKET 

0.22 

0.36 

0.56 

0.71 

1.30 

3.41 

11.28 

95.66 

also leads to a new approximation for  the variance via 
[28, eq.  (54)].  Since  there  are many component streams 
(e.g., loo), each stream tends to be a relatively negligible 
part of the whole, so that the delays experienced by pack- 
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ets are not greatly affected by other packets from the same 
source. The packet arrivals from a particular source tend 
to .be like  outside  observers who do not influence the sys- 
tem.  Hence,  the proportion of arrivals that are delayed 
before beginning service should nearly coincide with the 
long-run proportion of time  that  the  server is busy, which 
is exactly p .  (A  similar approximation for the probability 
of delay -in a  queue with a superposition arrival process 
was also developed empirically by Albin [29]. Based  on 
many simulations of queues with superposition arrival 
processes, Albin suggested the pure stationary-interval 
method for approximating the probability of delay, which 
here yields c: = 1 .O, as with Poisson arrivals. Then the 
probability of delay coincides with the fraction of time 
that the server is busy, p ;  see Wolff [41].) 

For the same  reason, in this problem the  delays expe- 
rienced by voice packets should be nearly the  same as the 
delays experienced by arbitrary packets. Hence, we use 
the description of the delays experienced by an arbitrary 

' packet also to describe  the  delays experienced by voice 
packets and  data packets separately. Of course, in other 
situations these delays  can be very different [42].  Table 
IV shows that the expected delays  for voice and data tend 
to be very close, so that it is indeed appropriate to use the 
expected delay of an arbitrary packet to represent the ex- 
pected delays of voice packets and data packets sepa- 
rately. Moreover,  the probability of delay is very close to 
the traffic intensity.  This illustrates how important insight 
into system behavior  can be gained from the model struc- 
ture, without obtaining numbers from simulations or sys- 
tem measurements. 

2) Expected Delpys: Comparisons to simulation in Fig. 
6 show that, unlike the M/GI1 approximation,  the QNA 
approximation accurately describes  the  dramatic increase 
in expected delays  under heavy loads, but the QNA ap- 
proximation seriously overestimates  the expected delays 
under lighter  loads.  (From  Table I11 we see that it is by 
as much as  60'percent.)  Hence, now we propose a refined 
approximation, obtained by simply changing the weight- 
ing function w ( p ,  u) in @), where we regard w as  a func- 
tion of a  single  variable r)  = (1 - p)2 (u  - 1). Heavy- 
traffic theory [31], [32] supports using r)  as  a fundamental 
variable. In particular, r )  can be used to determine whether 
p is high relative to u .  The key idea is that the M/G/l 
approximation seems to be good for  large r), say above 5 ,  
whereas the previous QNA approximation is pretty good 
for  smaller  values of r). In other  words, the knee of the 
curve  where  the actual expected delay increases sharply, 
departing from the M/G/l  value,  seems to occur  for r )  == 

5.  (See Fig. 6 and Table 111.) (Large-deviation theory, as 
in Weiss [12] , should be helpful for locating this point 
more precisely, but we do not pursue this issue here.) 

We want our new weighting function W ( r ) )  to have the 
following properties: 1) i T ( r ) )  = 0 for r)  1 5 ,  2) W ( q )  is 
a continuous decreasing function of r), 3) W(r))  -+ 1 as r )  

--t 0, and iv) W ( q )  = w(r)) for 0 < r )  < 5 .  The idea is 
to get something roughly appropriate.  The particular 
weighting function we suggest is 

where 

*(r)) = (1 + 2q)-'. (1 1) 

We chose (10) because it satisfies requirements 1)-3) 
above.  We chose the general form  (1 + Aq)-' in (1 1) to 
keep the same form as (8). We chose A = 2 to approxi- 
mately equate w (9) and W ( 7 )  for  the special case r)  = 2.5, 
which falls in the middle of the interval (0, 5 ) .  Finally, 
we calculated other values of W ( n )  to check that it is rea- 
sonable. 

Since the  M/G/l approximation slightly overestimates 
the expected delays under lighter  loads, we also reduce 
the squared coefficient of variation c: when 4 1 5 .  In 
particular, instead of c:, we suggest 

(n - l)/(n + l) ,  r)  1 5 ,  n 1 10, z: = [ (12) 
1 +.W(4)(c;M - l) ,  0 < 4 < 5 .  

We chose (12) for r)  1 5 because it seems consistent with 
the data and because it is a variant of the stationary-inter- 
Val method [22] ; see (6) and Table 11. The  case 0 < r)  < 
5 in (12) is obtained directly from (8), substituting W in 
(10) for w in (8). 

The modified QNA approximation for  expected packet 
delays exploiting (10)-(12) is compared with the  original 
QNA approximation in Section 111-A, the Poisson ap- 
proximation and the simulation values-in Table 111. The 
improved accuracy of the new approximation is  evident 
except at very high traffic intensities. 

IV.  A  TIME-SCALE  TEST:  THE  RELATED BLOCKING 
MODEL 

We  propose,  as  a general analysis  technique, estimating 
the k-interval squared coefficient of variation (the IDI) in 
order to understand the nature of the  dependence among 
successive interarrival times in a complex arrival process. 
Even the endpoints of the curve, c: and c2, can  be very 
useful [22]. (In many cases, as here,  these  can be deter- 
mined analytically.)  We contend that curves such as are 
displayed in Fig.  4 can provide important insight in many 
contexts.  For  example, here Fig. 4  suggests  that  the su- 
perposition of 60 voice streams behaves like  a Poisson 
process in a sufficiently short  time  scale (e.g., less than 
20 interarrival times), but like  a highly variable non-Pois- 
son process in a  longer  time  scale (e.g., of more than 100 
interarrival times).  This interpretation is supported by the 
delay curves in the numerical examples of Section 111. 

In this section, we describe  another  test. We consider 
a variant of the same model with the  same superposition 
packet arrival process, modified by imposing a  limit to 
the number of waiting spaces in the  queue, i.e., by having 
a finite buffer. (We assume  that, when the buffer is full, 
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Fig. 9. Voice packet  loss-Comparison of exact and M/D/lIK models for 
different  buffer sizes, K .  

arrivals are lost without generating retrials). Fig. 4 leads 
us to  expect  that the. actual proportion of packets lost 
would be nearly the same  as  for  a Poisson arrival process 
(the M/D/lIK model) when the buffer-size K is suffi- 
ciently small, but much greater than predicted by the 
Poisson model when K is large.  We would expect this 
because a buffer of size K means that at most K consec- 
utive interarrival times can interact directly in the queue. 
When K is large and the offered load is high,  the queue 
lengths are often large and hence many interarrivals times 
interact in the queue. Then the burstiness of the arrival 
process due to long-term positive covariances (see Fig. 4 
and Section 11-B) should cause  a much higher packet loss 
compared to a Poisson model. On the other  hand, when 
K is fairly small, few interarrival times can interact in the 
queue. Then the effect of positive covariances should be 
negligible and the exponential nature of the single interval 
(see Appendix A and flat portion of curve in Fig. 4) should 
dominate. As a result the packet loss in the system should 
be comparable to that of an M/D/ l /K  model. 

We tested this hypothesis by performing simulation ex- 
periments with different buffer sizes.  The actual propor- 
tions of packets lost are compared with the proportions 
lost when there  is  a Poisson arrival process in Fig. 9. The 

results are obviously consistent with our expectations. For 
a buffer size of 61,  the  actual proportion of packets lost 
is much greater than would be  the  case  with  a Poisson 
arrival process, but  for buffer sizes of 8 and 10, the pro- 
portion of packets lost nearly coincides with what would 
be the case with a Poisson arrival  process. In fact,  for 
buffer sizes of 8 and 10, the Poisson blocking probability 
is actually slightly greater under lighter  loads.  This result 
is not surprising, as  Fig. 4 and Table I1 indicate that a 
single interarrival-time distribution may be even less vari- 
able.-&an an exponential.. Thus when K is small, the 
packet loss may indeed be even smaller than that of the 
M/D/lIK model. (In actual  systems, the number of  buff- 
ers typically would be .large (about 60) ,  so that burstiness 
due to long term positive covariances must be taken into 
consideration for delay as well as packet loss.) We do not 
yet know how to determine exactly when the Poisson ap- 
proximation ceases to be appropriate,  but  the ID1 clearly 
provides important insight. 

V. CONCLUSIONS 

The specific focus of this study has been on the perfor- 
mance of a statistical multiplexer for voice and data. We 
have obtained useful approximations and important in- 
sights for  this  model, but there  also  are important impli- 
cations for the performance analysis of other complex 
queueing systems. There  are  three themes in this paper: 
1 )  using relatively simple approximations, 2) analyzing 
arrival processes to better understand the nature of the de- 
pendence among successive interamval times, 3) identi- 
fying the relevant i time scale. 

The first theme is relatively well understood: Simple 
approximations are obviously useful when they are suffi- 
ciently accurate; we have shown that simple approxima- 
tions with sufficient accuracy can indeed be developed for 
this model.  The second theme about dependence among 
successive interarrival times has a long history in voice 
traffic theory, most commonly involving the concept of 
peakedness; see Eckberg [43] and references cited there. 
However,  dependence among the interarrival times in ar- 
rival processes has not yet received as much attention as 
it should in the performance analysis of packet networks 
and computer  systems. Of course, many system measure- 
ments have been made [44]-[47] and many simulation 
models have been built to obtain data about system per- 
formance, but only rarely are the arrival processes mea- 
sured (or modeled and studied analytically) with the intent 
of understanding the statistical fluctuations due to depen- 
dence among interarrival times. This paper clearly dem- 
onstrates that dependence among interarrival times can 
play an essential role. Our analysis of -the multiplexer 
model shows that the aggregate packet arrival process 
possesses exceptional long-term positive dependence, 
partially characterized by the indexes of dispersion and 
that this dependence is a major cause of congestion in the 
multiplexer queue under heavy loads. Even though the 
aggregate packet arrival process with  many components 
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is nearly Poisson in the sense of Proposition 3 ,  it is not 
appropriate to simply model the aggregate packet arrival 
process as a Poisson process with the correct rate, cf. [47]; 
the M/G/l model does not work under heavy loads. 

We recommend routinely measuring the indexes of dis- 
persion and plotting curves such as in Figs. 3 and 4. A 
statistical estimation procedure is easily implemented in 
both system measurements and computer simulations 
(when ample  data  are  available).  For complex models we 
recommend estimating the indexes of dispersion of several 
flows in the model in order to help reveal how the depen- 
dence in an initial arrival process is altered by system fea- 
tures.  For  example, in systems with windows and other 
flow-control mechanisms we can  see how these features 
alter the dependence structure; i.e., reduce variability. We 
can  also identify sources of unanticipated and undesired 
variability, so that it can be eliminated or appropriately 
controlled.  We  believe that the indexes of dispersion 
should become standard measurement tools in perfor- 
mance analysis. 

Finally,  there is the third theme: identifying the rele- 
vant time  scale.  The third theme  comes to the  fore when 
we try to relate the ID1 to the congestion in the  queue. By 
the relevant  time  scale here we mean the typical durations 
over which arrivals interact in a  queue, and hence collec- 
tively influence the  queue  behavior.  We  see that an ap- 
propriate approximation for  the arrival process depends 
on the time  scale, and the relevant time  scale in turn de- 
pends on  the traffic intensity in the  queue [31], [32], [34]. 
The concept of the relevant time  scale was weil illustrated 
with the blocking model in Section IV. 

A direction for  future research is to develop approxi- 
mations for  congestion measures in a queue when the  ar- 
rival process is partially characterized by its  average  ar- 
rival rate h and the ID1 { c i ,  k 1 11; e.g., cs = c s ( ~ )  = 
E:= c i  w ( k ,  p ) ,  where w ( k ,  p )  is a more general weight- 
ing function than in (8) and 7 = 1 .  The idea is to develop 
a formula that depends on X and { c i ,  k 1 1 } , but not 
directly on other parameters specific to the  structure of the 
system. 

. APPENDIX 
The Interarrival-Time  Distribution in the  Superposition 
Process 

In Section 11-B, we indicated that the  aggregate packet 
arrival process resulting from  the superposition of voice 
sources differs from a Poisson process primarily because 
of the  dependence among successive intervals. We sub- 
stantiate this claim now  by calculating the cdf F,(t) and 
the squared coefficient of variation c:, for  a  single inter- 
arrival time in the  aggregate packet arrival process as  a 
function of the number n of voice sources.  For  the values 
of n we are  considering, the distribution is nearly expo- 
nential and the squared coefficient of variation is nearly 
one.  The numerical values are shown in Fig. 5 and Tables 
I and 11. In fact,  for sufficiently large n ,  the interarrival- 
time distribution is actually somewhat less variable than 

an exponential distribution with the same mean; i.e., it 
has less mass near zero and at large  values. This property 
is reflected by the squared coefficient of variation c!,, 
which i s  actually less than one  for n B 12. It decreases 
from 18.1 for n = 1 to a minimum of 0.91 at n = 18 and 
then increases toward 1 as n + 00. 

Let F(t) be the interarrival-time cdf in the renewal pro- 
cess for  one voice source with mean X - '  and let F,(t) be 
the associated cdf of the equilibrium-excess variable,  de- 
fined as usual by 

F,(t) = x [I  - F(u)j du, t 1 0, (A.I) s: 
see [22, eq. (1.5)]. It  is well known that the cdf of a  single 
interarrival time in the superposition process is 

F,(t) = 1 - (1 - F(t)) (1 - F,(t))" - ', t 1 0, 

(A.2) 

which is a  special  case of (4.4) in [22]. 
Here, the interarrival-time cdf from  one  source has tail 

and mean 

so that 

f 1 - At, O s t s T ,  

Hence, 

((1 - At)"-', O s t s T  

If we appropriately scale  time by n in the superposition 
process, then 

so that 

1 - F,(t/n) + e-" as n -+ cx, for any t > 0. (A.8) 

Hence,  for  large n ,  only the first component in (A.6) is 
relevant, and it is the  geometric approximation of the ex- 
ponential, tail; [48,.p.  11. 

In Table I, we compare the tail probabilities in (A.6) to 
an exponential distribution with the  same mean for  our 
multiplexer model in the  cases n = 20 and 100. The  close 
fit is apparent. Also note that the exponential distribution 
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has more mass near  zero and at large  values, as previously tions. Finally, we thank the referees for many helpful sug- 
claimed. gestions. 

From (A.6), it is straightforward to calculate the 
squared coefficient of variation. Recall that the mean of 
an interarrival  time X ,  in the superposition process is t11 

v 

E X ,  PT + 1 - p V I  
EX, = - =  ( nP ) .  (A.9) 

n 

Using the formula for  the cdf FJt) of X ,  in (A.6), we 
obtain 

P I  

01 

E ( X i )  = 2 l t [ l  - Fn(t)]  dt 
0 

r41 

[51 

t61 
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